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We discuss the generalization of a renormalization group technique developed 
previously for the study of ordering in unstable systems in the context of the 
ferromagnetic Ising model with spin-flip dynamics. Difficulties encountered in 
earlier work are eliminated through the use of new recursion relations depen- 
dent on a continuous spatial rescaling factor b >~ 1. A more careful analysis and 
implementation of the approximation scheme is carried out. Our improved 
method allows the study of the anisotropy of the time-dependent structure fac- 
tor and the pre-scaling behavior of the shape function. 
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1. I N T R O D U C T I O N  

Renormalization group (RG) methods developed previously (~'2) for treating 
the growth kinetics of a system subjected to a rapid temperature quench 
have led to a very good understanding of the basic physics in these 
problems, including the origins of scaling behavior and the degree of 
universality. Quantitative agreement with Monte Carlo (MC) simulations 
has been obtained in those regions where reliable MC results are available. 
In this paper we demonstrate how our previous calculations can be exten- 
ded by including higher orders in the approximation schemes developed 
earlier for treating the short time and distance behavior. Of more general 
interest, we deal with the problem of unphysical oscillations which result 
from the assumption that the spatial rescaling parameter b is a fixed 
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integer. We discuss this point in more detail below. Our basic conclusions 
are that our previous calculations were quite accurate in the regions of 
greatest physical interest, such as the scaling regime, although important 
corrections are found elsewhere. 

Use of renormalization group methods for treating problems which 
show scaling behavior is now a standard procedure. Typically, however, 
the calculations have been restricted to the extraction of critical indices and 
universal amplitudes for problems near a critical point. (3) Our own 
previous work has involved the development of RG methods capable of 
treating a wide range of properties of systems under a variety of physical 
situations./4'~'2~ In particular we have been interested in the time evolution 
of Ising-like systems subjected to a rapid and strong external force. Much 
of our attention has been directed toward systems subjected to temperature 
quenches from an initial state in thermal equilibrium at temperature T1 to a 
final state in thermal contact with a heat bath at temperature TF, where 
TI> To> TF and Tc is the critical temperature. It is, by now, well 
understood that the growth of order in these circumstances leads to scaling 
behavior in the quasistatic structure factor near those wave numbers, q, 
associated with Bragg peaks in the ordered state. It should be appreciated 
that this scaling behavior is not related to critical phenomena, unless T F is 
near To. In Refs. 1, 2, 5, and 6 we have developed RG methods for treating 
this problem. These involve techniques for calculating correlations over a 
wide range of temperatures, distances and times, in both equilibrium and 
nonequilibrium situations. The results were, for the most part, very 
accurate. We obtained excellent results for the time-dependent structure 
factor C(q, t) in comparison with results from Monte Carlo simulations, 
and those for the equilibrium structure factor C(q, T) were in agreement 
with the most sophisticated analysis in this well-researched field. ~3'7~ There 
were, however, certain technical problems which limited the accuracy of the 
method in some time and distance regimes. These difficulties were 
associated with unphysical oscillations ~s) in space or time which developed 
as part of the iterative solution of our RG recursion relations. These 
oscillations can be traced back to our use of an integral spatial rescaling 
factor b (b = 2). This choice is natural as long as one is thinking in terms of 
breaking the system up into a set of cells with b d spins in a cell (d is the 
dimensionality) and associating a new block spin with each cell. Clearly the 
spacing on the new lattice is b times the original, and all wave numbers 
must be rescaled by a factor of b if one compares properties associated with 
the two lattices: 

r' =r/b (1.1) 

q ' = b q  (1.2) 
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Unfortunately the process of dividing the system into cells breaks the trans- 
lational symmetry of the lattice, introduces unphysical quasiperiodicities 
and leads eventually to the oscillations mentioned above. 

For most of the problems we have studied, these oscillations are not 
quantitatively important, and since one can calculate the period of these 
oscillations they can be averaged over when they do occur. ~2'5) However, 
they are an unphysical artifact, and for certain purposes they are a 
limitation. A relevant example is the determination of the anisotropy of the 
scaling function F(x) associated with the structure factor C(q, t). Any 
anisotropy occurs in the wings of F(x) and this is the region where these 
oscillations, which appear to be more pronounced in certain directions 
than in others, begin to play a role. 

From a renormalization group point of view the question of the 
oscillations and quasiperiodicity is related to the RG flows of the 
parameters characterizing the problem. Thus we have for the quench 
problem the variables Tt, TF, (t, and t and associated recursion relations 
characterizing their flows under rescaling. As usual, Tz (>  T,) scales to 
infinity and TF ( < To) scales to zero and the three fixed points correspond 
to a completely disordered state, a critical point and a completely ordered 
state. The rescaling of time, t '=A(b) t ,  is such that the system flows to 
earlier times (A<I ) .  The wave vector rescaling, q'=bq(Mod2~z), 
however, is qualitatively different from the other rescalings. For any q ~ 0 
one does not scale to a fixed point, but instead one eventually generates a 
sequence of values of q which depend on whether or not the original wave 
number is a rational multiple of ~z, and which can generate a chaotic 
sequence in the first Brillouin zone. This also allows the mapping of 
antiferromagnetic degrees of freedom (q = rt, where ~ = (Tz, ~r) for the square 
lattice) onto the ferromagnetic point (q = 0). In the next section we discuss 
how the recursion relation for q can be put on an equal footing with those 
for T and t. 

There are two additional improvements and generalizations of the 
methods introduced in Ref. 2 which we want to discuss. First, in treating 
C(q, T) only the lowest-order spatial approximation was introduced in 
Ref. 2. It was mentioned there that the procedure could be generalized to 
include information from any number of static short-range correlation 
functions. We will show here how this can be done in a systematic fashion. 
The second improvement relates to the time dependence. In Refs. 1, 2, and 
5 we used a simple relaxation form for the short-range quantities which 
appear in the recursion relations. We pointed out that the relaxation rate 
can be determined from the initial derivative of the correlation functions 
upon quenching, a quantity which is known exactly. Since all the initial 
derivatives, not only the first, can be calculated exactly, it is obviously 
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desirable to have a systematic way of bringing in any number of additional 
derivatives. This is developed in the present paper, and in particular we 
show, for the case of spin-flip dynamics, how the results for the quasistatic 
structure factor are improved by the inclusion of second-derivative infor- 
mation. Similar procedures can be used for exchange dynamics. 

We want to briefly clarify here the use of the expression "renor- 
malization group" to describe the methods of this paper and of Refs. 2, 5, 
and 6. This should not be taken in the narrow sense of a Niemeijer- 
van Leeuwen (3) rigid block-spin type of analysis (as used, for example, in 
Ref. 4). It is better, for the problem discussed here, to use methods where 
the system is not subdivided into cells. These alternate implementations of 
the RG have largely been developed in the context of field theory. The use 
of the RG term to describe our methods can best be understood by referr- 
ing to Chap. 8 of Ref. 9. As it is pointed out there, there are a number of 
different ways of developing the RG which do not involve block-spin trans- 
formations. In general, the RG is defined in Ref. 9 as a "group of transfor- 
mations between different versions of the renormalized theory and one 
given theory" (Ref. 9, Section8.1). The recursion relations we derive 
[Eq. (3.1) and corresponding equations in Refs. 2 a n d 6 ]  are in fact the 
appropriate adaptation of Eq. (8.1) of Ref. 9 to the problem of growth 
kinetics. 

This paper is organized as follows. In Section 2 we discuss the new 
recursion relations and the equilibrium properties. In Section 3 we 
introduce the nonequilibrium recursion relations for SF dynamics and 
obtain results for C(q, t) which are free from the spurious oscillations dis- 
cussed above. In Section 4 we demonstrate how our approximations can be 
extended in a systematic fashion. 

2. G E N E R A L  D E V E L O P M E N T  A N D  
E Q U I L I B R I U M  C A L C U L A T I O N S  

Our first objective in this section is to show that equilibrium 
correlation functions for the Ising model can be calculated using RG 
techniques similar to those used in Refs. 1 and 2 for the same problem, but 
with a more physical treatment of short-ranged degrees of freedom under 
rescaling with an arbitrary, not necessarily integer, spatial rescaling fac- 
tor b. We will begin by generalizing the work of Refs. 2, 4, 8, and 10, where 
the fixed value b = 2 was used. In the next section, we will show how the 
quasistatic structure factor can also be evaluated, using the same techni- 
ques, for the case of growth kinetics generated by spin-flip dynamics. It is 
important to realize that the use of a fixed, integer b is tied to the division 
of the system into cells, which is in turn basic to the earliest formulations of 



Generalized Renormalization Group Treatment of Unstable Systems 21 

the real space RG. (3~ Escape from the constraint of an integer b, therefore, 
is possible only when one avoids the block spin methods of Refs. 1, 3, 4, 
and 8 used to derive recursion relations for correlation functions. The 
procedures developed in Refs. 2, 5, and 6, while free from the necessity of 
breaking the system into cells, retained a remnant of the block-spin 
procedure through the use of an integer value of b and a recursion relation 
for wavenumbers q ' =  bq (Mod 2~). We discuss here how these conditions 
can be replaced by more physical recursion relations q ' =  q'(b, q). 

Throughout this paper, we will focus our attention on the case of a 
square lattice with nearest-neighbor interactions only, but it will be clear 
that many of our conclusions and procedures have a more general validity 
and they are also applicable to the one-dimensional case of Ref. 8 and the 
cubic lattice of Ref. 10. 

Let us first recall that the establishment of a thermal recursion relation 
poses no difficulties whatsoever. If K is the nearest-neighbor coupling 
(K=  flJ, where J is the nearest-neighbor exchange constant) the relation 
between K and the renormalized coupling K' after an arbitrary rescaling b 
is given by 

~'= ~(K')= ~(K)/b (2.i) 

where { is the true correlation length which, for the square lattice, is 
known ~7) as a function of K. Equation (2.1) can therefore be shown to be 
equivalent to 

~b'= ~b b (2.2) 

~b = e 2~ tanh K (2.3) 

We recall (2/ that the recursion relation satisfied by the equilibrium struc- 
ture factor is 

C(q, K) = Co(q, K) + P(q, K) C(q', K') (2.4) 

where K' is given by (2.2), and the quantities Co(q, K) and P(q, K) are 
defined by (2.4), once K' and q' are determined. Physically Co(q, K) 
represents the contribution to C(q, K) from short-range degrees of freedom 
(roughly from wave numbers in the shell ~>q>rc/b), and P(q, K) 
represents a normalization factor relating % and aq., where ~q is the 
Fourier transform of the spin field. (2~ In the block-spin picture one is 
naturally led to the recursion relation 

q; =bqi (Mod 27z) (2.5) 
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where the index i denotes the components of the vector q. This relation is 
physically sensible only for long wavelengths. However as q increases away 
from the center of the first Brillouin zone, (2.5) brings q' to the zone edge, 
and then beyond, thereby introducing an artificial connection between 
unrelated wave vectors in the first Brillouin zone. This is the artificial 
periodicity discussed in the Introduction, and it is, in turn, the result of a 
failure to distinguish between those wave numbers which are associated 
with scaling behavior and those which are not. It is sensible that the short- 
range degrees of freedom characterized by a wave number  in the middle of 
the Brillouin zone flow away from the unstable fixed point associated with 
the ordering at the magnetic points at q = 0. This implies that under renor- 
malization the wave number flows into attractive fixed points associated 
with the high symmetry points at the zone boundary. 

A more physical relation between q' and q as a function of arbitrary b 
must have the following properties: ( i ) I t  must reduce to (2.5) for small q, 
(ii) it should have the periodicity of the lattice, (iii) it should reduce to the 
identity at the zone edge, and (iv)also, obviously, in the limit b = 1. Of  
course, these conditions do not uniquely determine the transformation. Our 
task is to choose, among the transformations satisfying the above 
requirements, one that is convenient to use. Given that transformation, we 
can then proceed with the determination of P and Co, along the lines dis- 
cussed in Ref. 2. 

A simple recursion relation which satisfies the above requirements, and 
which we shall adopt  for our calculations is 

q~ = 2 tan -1 b tan(qj2)  (2.6) 

Equation (2.6) clearly has the properties 

q;=bqi  ( q i ~ )  

q'(q + G) = q'(q) 

q;(~) = 

lim q;(q~) = qi 
b ~ l  

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

where G is any reciprocal lattice vector. Note that all wave vectors are 
measured in units of the inverse lattice constant. Equations (2.7) are 
mathematical  restatements of conditions (i)-(iv) above. It is often con- 
venient to rewrite (2.6) as 

cos qi--  c~ b 2 - 1 
' , c~ - (2.8) cos qi - 1 -- ~ cos qi b 2 + 1 
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We note, for b near 1, that ~ is small, which may be convenient for 
calculational purposes. 

We can now proceed with the determination of P(q) and Co(q). As in 
Ref. 2 (see also Ref. 4), these functions are determined from the behavior of 
known static correlations. Note, however, that in previous work (1'2'4) the 
restriction 

P (n )=0  (2.9) 

has been imposed on the function P(q) to prevent mapping the 
antiferromagnetic onto the magnetic susceptibility. Since (2.7c) already 
precludes this mapping, the restriction (2.9) is no longer necessary. 

In the determination of Co(q) and P(q) [see (2.4)] we are guided by 
our knowledge of the static correlation function in certain limits. The q = 0 
limit of (2.4) gives the recursion relation for the susceptibility: 

Z =  Zo + bdrCo;g ' (2.10) 

where, for convenience, we have defined P(0)= baT~o . In the ordered phase, 
simple RG arguments (2) show that 

7c o = ( m / m ' )  2 (T< r~) (2.11) 

where m is the equilibrium spontaneous magnetization. Near the phase 
transition the critical singularities cancel and ~o is a smooth function of 
temperature. Above T~ we can write 

bd~z = Z_-- Z2 (2.12) o Z'--Z; 

where Zt is the local, analytic part of )~.(11,1a) Equations (2.10) and (2.12) 
therefore show that 

)~o = 7 ~ -  ba~oZ; (2.13) 

is also a smooth function of temperature. Because of the trade-off between 
Z0 and So in (2.10), we have found that their particular form is relatively 
unimportant. We can, therefore, fix )~ at its value at the critical tem- 
perature, Z* = 0.11 (12) in two dimensions, and obtain 

Zo=Z*(1 --bdTro) ( T > . T , )  (2.14) 

The quantity ~o, defined by (2.11) for T< T c and (2.12) with Z z = Z *  

for T> To, is smooth at T=  To. One can then determine )~o for T< TL. 
using low temperature expansions for )5 while ~o [and Zo via (2.14)] is 
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determined for T >  Tc from (2.12) using high-temperature expansions for )6 
The results for So are shown in Fig. 1 for several values of b. Notice from 
(2.11) and (2.12) that as b--*l and )C'~)C, Zo--* 1, and Z0--*0 and (2.10) 
reduces to the identity. 

In generalizing (2.10) to nonzero wave vectors, our guiding principle is 
that (2.4) should always reduce to a trivial equality in the limit b -*  1, i.e., 

lim Co(q) = 0 (2.15) 
b ~ l  

l im P(q)= 1 (2.16) 
b ~ l  

We can choose P(q) in agreement with (2.16) and (2.10) if 

P(q) = ~of(q)  

where 

and 

(2.17) 

lim f ( q ) :  1 (2.18) 
b ~ l  

lim f (q )  = b a (2.19) 
q ~ 0  

1.0 

% o.5 

u 

U : tanh K 

I 
0.5 1.0 

Fig. 1. The parameter % as a function of temperature, for several values ofb. 
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There is an additional constraint since in the Ising model the "fixed-length 
spin" sum rule must always be satisfied: 

l: fuz~C(q):fuz,  daq' C'(q') (2.20) 

where BZ denotes the first Brillouin zone of the lattice. The mapping (2.6) 
preserves the Brillouin zone. We see, therefore, that f (q)  can be taken to be 
the Jacobian of the transformation (2.6): 

f (q )  = I~ dq; (2.21) 
i =  1 ~ q t  " 

This satisfies (2.18) and (2.19) [see (2.7)] and ensures that P(q) is a 
periodic function of q. We therefore adopt (2.17) and (2.21). 

We now turn to the inhomogeneous term Co(q) which, like X0, should 
be a local, well-behaved function of T and q. As such, it may be expanded 
in a Fourier series, 

d 

Co(q) = ~ eo(m) l-[ c~ (2.22) 
m i - - I  

and approximated by a finite number of terms. In Ref. 2 the coefficients 
e0(m) were determined from 

Zo = Y, eo(m) (2.23) 
m 

and from recursion relations for exactly known short-range spatial 
correlations which were developed there. However, the recursion relation in 
momentum space (2.6) suggests that we take a different approach. The 
flows generated by (2.6) under iteration lead into the antiferromagnetic 
point of the Brillouin zone. It is therefore important that the recursion 
relation be as accurate as possible near that point. This can be accom- 
plished by using the known values, from series expansion, (13~ for the 
antiferromagnetic susceptibility, Za, to determine the quantity 

Zo, a = Co(re) = Za - b d~oZ'a (2.24) 

in addition to Zo. Together with Eqs. (2.23) and (2.20), knowledge of Zo,, 
enables us to find the first three coefficients in (2.22): 

So(0, 0) = 1 - ~z o 

~o(1, 0)= (Zo- Zo,a)/8 

eo(1 , 1)= (Zo + Zo,a + 2~o-2) /8  

(2.25a) 

(2.25b) 

(2.25c) 
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35 / I I I 

2 b=l.5 - 

:It J 
14 //  

):1.1 
7 

0 0.5 1.0 1.5 2.0 

qx 
Fig. 2. The static structure factor C(q) as a function of qx = q. The curve labeled b = 2f is 
from Ref. 2 and b = 1.1, 1.5 are from the present calculation. This is in the critical region, 
u = tanh K = 0.41. 

The structure factor  C(q) which results f rom iterating (2.4) within the 
above  approx imat ions  is shown in Fig. 2 for several values of  b, a long with 
the result of previous work,  (2) b = 2 ,  which we will refer to as b = 2 f .  
Because this is in the critical region, u = tanh K = 0.41 ~< uc, the wiggles in 
the b=2f case, which were discussed in the introduct ion,  are very 
pronounced.  The  present  calculat ion is only slightly b dependent ,  and is 
very smooth:  the spurious oscillations have indeed been eliminated. 

3. T H E  Q U A S I S T A T I C  S T R U C T U R E  F A C T O R  

We now turn to the calculat ion of nonequi l ibr ium properties.  We will 
focus our  a t tent ion on the quasistat ic s tructure factor  C(q, t), whose recur- 
sion relat ion is a general izat ion of (2.3): 

C(q, t) = Co(q, t) + P(q, t) C ' (q ' ,  t ')  (3.1) 

C(q, t) and  the quanti t ies Co(q, t) and P(q, t) depend on both  the initial 
and final t empera tures  Tr and TF. The renormal ized  couplings K), K'F and 
wave vector  q' are determined,  as for the static case, by (2.2) and (2.6), 
respectively. The  t ime variable is also renormalized;  this is discussed in 
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detail in Refs. 2 and 6. We consider here spin-flip dynamics in zero field, in 
which case we have (2) 

t '=  At (3.2a) 

A = b  -2 (3.2b) 

Spin-flip dynamics approximate  (5) the behavior  of a binary alloy which 
orders at low temperatures.  We use here the same flipping probabil i ty as in 
Ref. 2. 

The time dependence of the functions Co(q, t) and P(q, t) is deter- 
mined in a manner  similar to Refs. 2 and 6. They depend on the local quan- 
tities )~o,,(t), Zo(t) and ~Zo(t) which will decay rapidly to their final 
equilibrium values from their initial state. This decay is assumed (2) to be 
given by the relaxational  form 

TC0([) F ) , t  F = 7r o - e (~o -- ~z~) (3.3a) 

where 
2 = ~o(0)/(Tr~- z~) (3.3b) 

and the dot  denotes the time derivative taken at t = 0. Since 2 must  be 
positive, ~o(0) must have the same sign as rc~-7z D. One can see in Fig. 1 
that ~Zo is a mono ton ic  function of the temperature.  This is not  true for Xo 
which vanishes both at T - - 0  and T =  oe. Since A < 1, Eq. (3.2) implies that  
the recursion relations iterate to t = 0. As in Ref. 2 we will deal here with 
the case where the initial temperature  is infinite, so that at t = 0 ,  
C(q, t = 0 ) =  1. It is then convenient  to perform the iterations in terms of 
the quant i ty  

D(q, t) = C(q, t) - 1 = Do(q, t) + P(q, t) D'(q' ,  t ') (3.4) 

and define 

~o(t) = Do(0, t) = Zo + b27ro - 1 (3.5a) 

~o,,(t) = Do(n, t) = Zo,~ + b 2~z o - 1 (3.5b) 

which have the desired monotonici ty .  Using the exactly known initial time 
derivatives (2))~(0) and )~,(0) and (2.10), (2.13), and (2.24), we find that  

ba F -  a'F 
~o(0) = 4c~ b4(1 _ Z*) (3.6a) 

bZaF- a'F 
b2 (3.6b) ~'o(0)  = 4~  

~o,a(0) = -4c~ 
b6aF- a'F 

b 6 (3.6c) 



28 Anderson, Mazenko, and Vails 

where aF:tanh(2KF) and c~ is, as usual, the flip rate at infinite tem- 
perature. The quantities ~o(t) and ~bo.a(t ) are assumed to have a time 
dependence of the form (3.3a) with decay rate given by expressions 
analogous to (3.3b). 

The recursion relation (3.4) may then be iterated to obtain the time- 
dependent structure factor. Results corresponding to a quench to zero tem- 
perature are shown in Fig. 3 for several values of b, at time t = 5 (all times 
are in units of c~-1). For comparison, we include also in Fig. 3 results 
obtained using the fixed b = 2 method of Ref. 2. Note the convergence of 
these results as b approaches unity. As in the static case (see Fig. 2) the 
fixed b method introduces spurious oscillations, which disappear when 
using the present procedure. This is clearly shown in Fig. 4, obtained under 
the same conditions as Fig. 3, but for very long times and along the (10) 
wave vector direction. The new results are again very smooth. 

The wave vector directions (11) and (10) are compared in Fig. 5, at 
time t =  10. One of the advantages of these renormalization group 
calculations as compared to Monte Carlo simulations is the detailed wave 
vector dependence that can be generated; as can be clearly seen in Fig. 5, 
the structure factor is anisotropic, with a smaller width qw in the (11 ) direc- 
tion. This was also found in the alloy problem of Ref. 6. Since the domain 
size L~q~ 1, this shows that the growth is greater in this direction. The 
degree of anisotropy is significant at 18 %. 

Figure 6 displays the susceptibility )~(t) = C(0, t). It is seen that )~(t) is 
proportional to t. This is in agreement with the Lifshitz-Cahn-Allen law (14) 
[L(t)~t ~/2] combined with scaling. We also see that at least at the 
relatively early times included in Fig. 6 the results at b = 1.1 are in better 
agreement with MC simulation results (also shown) than the previous 
theoretical results obtained for b = 2f. 

For sufficiently long times, C(q, t) for this model is known (2'5'~5) to be 
of the scaling form, 

C(q, t)=X(t)F(x=q/qw(t)) (3.7) 

where qw(t) is the width of C(q, t). F(x), the scaling function, is plotted as a 
function of Ixl in Fig. 7. Again, we see wiggles for fixed b = 2; while b = 1.1 
is very smooth. The wiggles prevent F from being a truly scale-invariant 
function, whereas the b = 1.1 result is independent of time and also, as in 
Refs. 2 and 5, essentially independent of temperature. Of course, the scaling 
behavior is found only at sufficiently long times, or small txl, or both. At 
early times, and large Ixl, F is a periodic function. This is clearly seen in 
Fig. 8. But for times t >/10 and Ixl ~< 10, F(x) is essentially time indepen- 
dent. In this regime, there is an algebraic decay F(x )~  Ixt ~, where c~ = 2.9; 
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28 ~ ' k ~  = 1.5 

21 
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0.2 0.4 0.6 
qx 

Fig. 3. The time-dependent structure factor C(q, t) as a function of q x -  q /x /2 .  This is for a 
quench from T~ - co to T~= 0, after a time t = 5. Again, the curve labeled b - 2 f i s  from Ref. 2, 
and b - 1.9, 1.5, 1.1, and 1.01 are from the present calculation. 

IO 

6 
IG 

4 
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/ 
b:2f 
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b=l.I 

I I 

2 3 
qx 

Fig. 4. The time-dependent structure factor C(q, t) in the (10) direction as a function of 
q x = q ,  after a long time t =  1000. Again, T~= m and T F = O  , b = 2 f i s  Ref. 2 and b =  1.1 is the 
present calculation. 
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Fig. 5. The t ime-dependent structure factor in the two wave vector directions (11) and (10). 
Both are plotted versus q. Tj = 0% T F =  0, and t = 10 for all curves. 
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100 runs). 
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Fig. 9. The nearest-neighbor order parameter e(1, 0) as a function of time. Both b -  1.1 and 
Monte Carlo results are shown. T 1 - ~ ,  T r -  0; the Monte Carlo calculation is for a 128 x 128 
lattice and 100 runs. 

this is i'n agreement with c ~ = d + l  (Porod's law(16)), and as previously 
found in Refs. 2 and 17. 

Another quantity of interest is the nearest-neighbor correlation 
function, e(1, 0), through which one can monitor  the growth of short-range 
order. The most straightforward way to calculate e(1, 0) is to numerically 
integrate the structure factor C(q, t) as calculated by iterating Eq. (3.1), 
and this is the approach we have used since the alternative procedure (2) of 
Fourier transforming the recursion relation (3.4) first and then iterating is 
less practical in this case. Figure 9 shows the b = 1.1 result, along with a 
Monte Carlo calculation of ~(1, 0). We see that there is only a difference of 
a few percent between the two. 

We see that the results obtained are extremely satisfactory: they com- 
pare with MC simulation as well or better than the results of Ref. 2, while 
both equilibrium and nonequilibrium quantities are now free of oscillatory 
artifacts. 

4. E X T E N S I O N S  OF T H E  B A S I C  M O D E L  

In developing our basic model in Sections 2 and 3, we have made two 
approximations which can be improved upon in a systematic fashion. The 
first was the truncation of the Fourier series for Co(q), Eq. (2.22). The only 
information used to determine Co(q) was the fixed-length-spin condition 
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expressed through (2.25a), and information about  the ferromagnetic (q = 0) 
and antiferromagnetic (q = ~) fixed points (2.25b,c). In Fourier space, the 
latter two are an anisotropic set, and may very well contribute to the 
anisotropy which is observed in Fig. 5. Therefore, when including more 
Fourier coefficients in the expansion Co(q), it is reasonable to choose the 
next one to be the (1, 0) point in wave vector space: 

Z~o = Co(~, O) = C(~, O) - rCo C'(~, O) (4.1) 

It is straightforward to approximate XlO in a manner similar to Zo,~, since 
C(~, 0) is accurately known from series expansions (7) [both Za and C(~, 0) 
are, of course, well-behaved quantities at all temperatures] .  This allows an 
extra term [~o(2, 0)] to be included in the expansion (2.22). 

The resulting structure factor shows a small but significant difference 
from the lower order or "basic" model. The difference is easily seen by 
plotting the width of the structure factor in Fourier space, as in Fig. 10. 
The basic model is seen to be much flatter in the (11) direction; including 
ZlO does indeed produce a more isotropic structure factor, with an 
anisotropy that is still 10 %. This indicates that there really is preferential 
domain growth in the (11) direction as discussed in Section 3 and found in 
Ref. 5. 

Fig. 10. 
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The structure factor width q~,(t) for the basic and extended Fourier models. The lat- 
ter is seen to be somewhat more isotropic. T~ = o% T F -  O, b - 1.1. 
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If one wishes, it is straightforward to extend this procedure and 
include more of the "high-symmetry" points of the Brillouin zone. Simple 
approximants for well-behaved quantities such as go, Za, Zlo can be formed 
using information from, for example, Tarko and Fisher. (7~ We expect, 
however, that there will be very little change beyond the inclusion of these 
first three. 

The other approximation involves the time dependence of these local 
variables. With the simple relaxational form (3.3), there is only one 
parameter, 2, which is determined by the first time derivative (D= 1). 
However, more parameters may be included to systematically incorporate 
higher-derivative information into the model. For example, to include the 
second time derivative (D = 2), we add in the appropriate power of t to 
(3.3): 

~o(t)=~F--(~zF--%~)(1 + Bt2)  e ~" (4.2) 

Thus 

2 = ~-(0)/(~ F -  ~ )  (4.3a) 

B = - [ 2 2 +  //o(0) ] / 2  (4.3b) 

Fig. 11. 
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The susceptibility Z(t) for D =  1 ( b = 2 F ,  b =  1.1), D - 2  ( b =  1.1), and Monte Carlo 
(128 x 128 lattice, 100 runs), for later times than Fig. 6. 
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The second time derivative //0(0) may be determined in the same way as 
the first derivatives (Ref. 2 and Section 3). The form (4.2) ensures that the 
value of 2 is unchanged from the D = 1 case, and it is easy to verify that the 
value of B derived from (4.3b) ensures that tOo(t), as defined by (4.2), is a 
monotonic function of time. Additional derivatives can be incorporated in 
the theory by adding higher order terms to the 1 + B t  2 polynomial in (4.2). 

The D = 2 result for the time-independent susceptibility is shown in 
Fig. 11, along with the previous D = 1 results (b = 1.1, 2f), and a Monte 
Carlo simulation. This is an extension to later times of Fig. 6, showing that 
the D = 1 susceptibilities, while remaining close together, separate from the 
Monte Carlo. The D - - 2  susceptibility, however, remains close to the 
Monte Carlo result for much longer times. 

5. C O N C L U S I O N S  

We have studied in this paper the extension of previously developed 
RG methods for the growth kinetics of unstable systems. Three indepen- 
dent questions have been studied. The first, which affects even the 
calculation of static correlation functions, is the development of spatial 
recursion relations which properly treat short-distance behavior. We have 
shown how the introduction of these recursion relations yield smooth 
results for the correlation functions in Fourier space, eliminating the 
unphysical nonmonotonicities which had been found in previous work 
which used the standard form of the recursion relations. This was the 
major problem that we set out to solve. Elimination of these artificial 
oscillations permits a more detailed study of the anisotropy of the 
quenched system as time evolves, as we have seen earlier in the paper. 

The two other questions discussed, in Sections 3 and 4, were the 
procedures used to include known information in the calculation in the 
form of static correlation functions and initial time derivatives. It is clear 
that these methods can be extended in a straightforward and systematic 
way. The results were favorably compared with previous work and MC 
simulations. 

In this paper we have used spin-flip dynamics which, for example, 
model order-disorder transitions in binary alloys. It was shown in Ref. 5 
that results obtained using spin-flip dynamics are very similar to those 
obtained using antiferromagnetic spin-exchange dynamics, which includes 
one conserved quantity (not the order parameter) and represents, 
therefore, a more accurate modeling of the actual dynamics in a binary 
alloy undergoing an order-disorder transition. However we expect only 
minor changes in this case from the spin-flip results. A separate question, 
which we have not directly addressed here, is how to introduce the 
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methods discussed in the present work in the case of spinodal decom- 
position, where the order parameter is conserved (see Ref. 6). The conser- 
vation law for the order parameter and the fixed-length-spin sum rule, as 
incorporated into the formalism of Ref. 6, must be considered together with 
the recursion relation (2.6). Further work is required to carry this out in a 
convenient manner. On the other hand, the inclusion of additional time 
derivatives in such models can be handled in the same way as in Section 4 
and pose no technical difficulties whatsoever. The same is true of the 
techniques used in Section 4 to incorporate the information of static 
correlations. 
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